报告人:李彦夫,清华大学质量与可靠性研究院院长、清华大学工业工程系长聘教授
报告时间:2024年5月17日上午9:30
报告地点:机械楼D526
报告摘要:
Prognostics and Health Management (PHM) is an important research direction in reliability engineering. With the large-scale deployment of sensors and the maturity of big data technology, PHM has been more and more widely used in complex engineering systems, and it has produced significant social and economic benefits. PHM generally includes the key tasks such as anomaly detection, fault diagnosis, health assessment, and remaining useful life (RUL) prediction. The new generation of machine learning methods represented by deep learning has played a central role in promoting the development of PHM in the big data environment. This report takes high-speed train key components and subsystems as examples, and presents the latest developments in our laboratory. These new methods have a certain degree of versatility, and can be extended to the key components of other types of engineering systems.
个人简介:
李彦夫,清华大学质量与可靠性研究院院长、清华大学工业工程系长聘教授。2011-2016年任教于法国巴黎中央理工与高等电力学院。长期致力于工业大数据分析、系统可靠性、预测性维护(PdM)理论与方法的研究。发表高水平期刊论文100余篇,代表性著作发表在《IEEE Transactions》系列、《IISE Transactions》等国际著名期刊,其中ESI高被引6篇,2019-2023年连续入选爱斯维尔中国高被引学者榜单,2020-2022连续入选美国斯坦福大学发布的全球前2%顶尖科学家榜单。出版专著2部,编著教材2部,授权发明专利11项。主持国家自然科学基金重点项目、国家重点研发计划课题以及市场监管总局委托项目。与华为、南方电网等头部企业长期合作,多项研究成果企业应用转化。获得中国运筹学会应用奖、省部级科技进步二等奖1项,以及多项国际国内学会论文奖项。服务质量强国战略,开展质量政策研究,多项资政报告成果被市场监管总局、全国人大财经委等部门采纳。担任可靠性旗舰期刊《Reliability Engineering & Systems Safety》和《IEEE Transactions on Reliability》副主编、中国检验检测学会常务委员、中国系统工程学会系统可靠性专委会副主任委员、第四、五届中国质量奖评审专家。